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1. Introduction 

In a commutative ring R with an identity element one can consider a multiplica- 
tive congruence which is coarser than the classical congruence modulo an ideal a in 
R. Forming the factor ring I? = R/a we declare b and c in R as canonically congruent 
module a whenever these two elements give rise to residue classes 6, c which generate 
the same principal ideal (6) =(c) in R. We use the term ‘canonical’ because this con- 
gruence may be characterized as the unique coarsest multiplicative congruence on R 
with the property that any ideal b > a is a union of congruence classes. We shall 
denote the canonical congruence modulo a by b = c (a) whereas the classical con- 
gruence is, as usual, denoted by b =c (mod a). 

Specializing to the ring E of integers we have the following suggestive interpreta- 
tion: the integers a and b are canonically congruent modulo n iff the greatest 
common divisor of a and n equals the greatest common divisor of b and n. 

The aim of the present paper is to investigate for which rings the Chinese 
Remainder Theorem holds for a finite collection of canonical congruences which are 
compatible in an obvious sense. In contrast to the ordinary Chinese Remainder 
Theorem for classical congruences, this poses a non-trivial problem. Whereas two 
compatible, classical congruences always have a solution this is not the case for two 
canonical congruences even in a unique factorization domain like Z[X, JJ]. We shall 
say that R is a Chinese ring if, given elements a, b E R and ideals a, b CR such that 
a =b (a+ 6) there exists an element CE R such that c=a (a) and c=b (b). Although 
we shall not be able to give a complete characterization of Chinese rings we shall 
show that they include all Bezout rings, Dedekind domains and local rings as well as 
finite products and factors of such rings. 
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2. The Chinese Remainder Theorem in ideal systems 

The above definition of a canonical congruence in a ring is just a special case of a 
kind of congruence which arises naturally in the theory of ideal systems. To every 
ideal A in an ideal system on the commutative monoid D there is associated a 
canonical congruence which may be characterized as the unique coarsest congruence 
on D such that every ideal containing A is a union of congruence classes. More ex- 
plicitely, we may define this congruence by putting b = c (A) whenever (A, 6) = (A, c) 
(where ( ) denotes ideal generation) or with a different notation: A + {b} = A + {c}. 
(For basic definitions concerning ideal systems see [I] where a slightly different 
notation is used.) 

We shall say that the Chinese Remainder Theorem for n canonical congruences 
(abbreviated CRT,) holds for an ideal system on the monoid D if the following 
property is satisfied: Given n ideals A r, . . . , A, and n elements al, . . . , a, in D such 
that ai=ai (Ai+,4i) there exists an element aeLI such that u=Ui (AJ for 
i=l,2,..., n. It was proved in [2] that CRT, holds for all n if and only if CRT2 holds 
and the lattice of ideals is distributive - which in turn was shown to be equivalent to 
CRT3. 

We can formulate a slightly different CRT,-condition exclusively in terms of 
ideals by replacing the above elements (I~, . . . , a, by ideals and also ask for an ideal 
solution instead of the above element solution a. We shall in this case speak of the 
ideal version of CRT,. (By writing B = C (A) we simply mean A + B =A + C.) If the 
lattice of ideals is modular we shall speak of a modular ideal system. 

Lemma 1. The ideal version of CRT* is satisfied in any modular ideal system, 
meaning that in any such system two compatible congruences will have an ideal 
solution. This ideal solution may be chosen to be finitely generated in case we are 
dealing with the usual element version of the CRT2 -condition. 

Proof. The first part of the lemma is a direct consequence of the fact that in a 
general lattice L., the CRTz-condition for the l-system of lattice ideals in L is equiva- 
lent to the modularity of L and also to the additivity of the l-system in L (see [l]). 
For the second part of the lemma, let b, c, B, C be given subject to the compatibility 
condition b =c (B + C). By the first part of the lemma there exists an ideal A such 
that B +A = B + { 6) and C +A = C + {c}. Since an ideal system is assumed to be of 
finite character we have a finite number of elements ai, 0; E A, b, E B and c, E C such 
that be (a,, . . . . a,,,, b,, . . . . b,) and CE (a;, . . . . ai, c,, . . . . c,) (where ( ) denotes ideal 
generation). By putting F = (a,, . .., a,,,, a;, . . . , ai)weshallhaveB+F=B+{b}and 
C+F=C+{c} as desired. 
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3. Chinese rings 

We have defined a Chinese ring as a commutative ring with an identity element in 
which any two compatible canonical congruences possess an element solution. 

Lemma 2. The family of Chinese rings is closed under finite products and under 
factor formation. 

Proof. Let R = R, x me. x R, be a direct product of Chinese rings and assume that 

(a t, . . . . a,)= (b,, . . . . 6,) (a + b) where a;, bi E Ri and a and b are ideals in R. It is clear 
that any ideal in R is a product of ideals in the factors R;, a=fl Xi(a) =n ai, at the 
same time as aim b; (ai + bi), the latter being a consequence of the relation 

n a; + n bi = fl (ei + bi). (3.1) 

Since each Ri is Chinese we have elements ci E Ri such that Cis ai (ei) and Ci z bi (bi). 
The element c= (c,, . . . . c,) E R then solves the original canonical congruences in R. 

The second part of the lemma is obvious. It says that any homomorphic image of 
a Chinese ring is Chinese. 

The following characterization of Chinese rings is quite useful. 

Lemma 3. A ring R is Chinese if and only if for given elements x, y, r, s E R there 
exists an element z E R such that 

(x - ry, z) = (y - sx, 2) = (x, Y). (3.2) 

Proof. Assume first that R is Chinese and put a = (x - ry), b = (y -sx) in which case 
a+bC(x, y). Then a+(y)=(x, y)=b+(x) and also a+b+(y)=(x, y)=a+b+(x) 
which implies x= y (a + 6). By CRT2 there exists z E R such that t = y (a) and 
z =x (b), i.e. (a, t) = (a, y) = (x, y) and (b, z) = (b, x) = (x, y) as required in (3.2). 

Assume conversely that (3.2) holds. From a given compatibility condition xm y 
(a + b) where a and b are ideals in R we derive relations x= aI + b, + ry and y = 
a~+b~+sxwithal,a2Ea,b,,b2Ebandr,sER.Puttingx’=x-alandy’=y-b2we 
obtain x’=x-a,=b1+ry=b,+r(y’+b2)=b+ry’ with bEb and y’=y-b2= 
a2+sx=a2+s(x’+a,)=a+sx’ with aEa. Applying (3.2) to the elements x’, y’,r,s 
there exists an element z such that (x’- ry’,.z)=(y’-sx’,z)=(x’, y’)=(x’,a)=(y’, b) 
or (b, z) = (a, z) = (x’, y’) = (x’, a) = (y’, 6) from which follows z =x’ (a) and z = y’ (b). 
Combining this with the fact that X’E x (mod a) and y’= y (mod b), classically, and 
hence also canonically we obtain ZEX (a) and z= y (6) as required. 

Theorem 1. The following types of rings are Chinese rings: 
(A) Bezout rings, 
(B) Dedekind domains, 
(C) Local rings. 
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Proof. Case A. We give two proofs. Since the lattice of ideals of a commutative 
ring R is modular it follows from Lemma 1 that any two compatible congruences 
have a solution in terms of a finitely generated ideal - and hence an element solution 
in case R is Bezout. On the other hand it is also clear that the relation (3.2) will be 
satisfied if we choose z as a generator of the ideal (x, y) in case R is Bezout. 

Case B. Let as b (a + b) be given in R. If a or b is the zero-ideal in R we shall have 
either a C b or b c a and CRT2 holds since we may choose the solution c = a or c = b 
respectively. We may therefore assume that both a and b are different from the zero- 
ideal, hence also aft b # (0) since R is an integral domain. By the Dedekind property 
the classical factor ring R/an b is a principal ideal ring and by Lemma 1 there exists 
an ideal c in R such that a + c = a + {a} and b + c = b + { 6). Passing to the factor ring 
modulo a 17 b the ideal c is converted into a principal ideal (e), CE R/a ft b and it is 
clear that c represents a solution to the two given canonical congruences. 

Case C. We shall show that (3.2) holds for a suitably chosen z E R in case R is 
local. There are two possibilities: 

(1) r is a unit. Then z =x will do. 
(2) r is not a unit, i.e. rem (maximal ideal in R). 

In this case we put z=y-sx+x which gives the relation (y-sx, z)=(x, y). Further- 
more the ideal (x-ry,y-sx+x) contains x-ry+r(y-sx+x)=x(l -rs+r) and 
thus contains x since I- rs + r is a unit. Hence it also contains y - sx+ x + (s - 1)x = y 
thereby completing the proof of the theorem. 

Let a Dedekind ring be a commutative ring (with possible zero-divisors) such that 
any of its proper ideals may be written as a product of prime ideals. Such a ring is 
characterized by the fact that it is a direct product of a finite number of Dedekind 
domains and a principal ideal ring (see (3, p. SSS]). Invoking Lemma 2 and 
reminding the reader of the basic fact that any commutative Artinian ring is a 
product of a finite number of local (Artinian) rings we thus get: 

Corollary 1. Any finite product of homomorphic images of Bezout rings, Dedekind 
domains and local rings is Chinese. In particular, Dedekind rings and Artinian rings 
are Chinese rings. 

We also note the following 

Corollary 2. The following types of rings have a Chinese Remainder Theorem for 
any finite number of canonical congruences: 

(1) Principal ideal rings, 
(2) Bezout rings, 
(3) Dedekind domains (or rings), 
(4) Anyfinite direct product of homomorphic images of rings of the types (l), (2) 

and (3). 
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Proof. According to Theorem 1 (and Corollary 1) these types of rings are all 
Chinese. By the general result mentioned in Section 2 (and proved in [2]) it therefore 
suffices to show that they are also arifhmerical (i.e. have a distributive ideal lattice). 
Since it is well known (and easily verified) that a ring is arithmetical if and only if its 
localizations at prime ideals are arithmetical, (1) follows from the fact that in a local 
principal ideal ring the Krull intersection theorem implies that the ideals are totally 
ordered under inclusion and hence form a distributive lattice. It is well known that 
Dedekind domains are arithmetical and so are Bezout rings, as was shown in [4]. 
Finally, the class of arithmetical rings is closed under finite direct products and 
under factor formation (i.e. under homomorphic images). The first part of this 
claim follows from (3.1) together with the similar relation n a;ft n b;= n (a;n b;). 
whereas the second part is obvious. 

It follows from this corollary that Dedekind rings in the above sense as well as 
Von Neumann regular rings have a Chinese Remainder Theorem for canonical con- 
gruences. 

4. Unique factorization domains need not be Chinese 

In view of the quite comprehensive classes of Chinese rings mentioned above one 
might perhaps believe that every commutative ring with an identity element is 
Chinese. A crucial test-case is here formed by certain unique factorization domains, 
namely by polynomial rings over the ring of integers B. As a first result in this direc- 
tion we may note the following consequence of Lemma 3. 

Proposition. If every polynomial ring Z[X, x U, V] in four variables over the 
integers were Chinese, then any commutative ring would be Chinese. 

Proof. If H[X, Y U, V] were Chinese, then, by Lemma 3, there would exist a 
z E Z [X, Y U, V] such that 

(X-Uy,z)=(Y-VX,z)=(X, Y). 

Given four elements x, y, r, s in a general ring R we get a ring homomorphism 
$J : Z [X, Y CJ, V] + R by sending X, Y U, V to x, y, r, s respectively and o(z) will 
according to Lemma 3 represent a solution to the two given canonical congruences 
and R is hence Chinese. 

However, every commutative ring is not Chinese and we need not go as far asfour 
variables to prove this. 

Theorem 2. Z[xI,x2, . . ..x.] is not Chinese for n 12. 
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Proof. Due to the latter part of Lemma 2 we may limit ourselves to the ring Z[x, y]. 
Put a=(x), b=(3x-Sy), a=y, b=x-2y. Then arb (a+b), but in spite of this we 
shall show that there is no z solving the relevant congruences, i.e. satisfying the 
relations 

Ix. z) =(x, Y), (4.1) 

(3x-5y,x)=(3x-5y,x-2y). (4.2) 

Assume that z is written in the form z=&(x) +fi(x)y+f2(x)y* + a-- and consider the 
ring homomorphism f(x, y) -fl) =f(O, y) from Z[x, y] to Z[ y]. Applying 

Z=fo(O)+fi(O)_fj+*** (4.3) 

to the relation (4.1) we obtain (2) =(j) which together with (4.3) gives ye(O) = 0, 
fi (0) = f 1 and J(O) = 0 for i 12. This means that 

z=ElY+Xf(X,Y) (4.4) 

with E t=+l andf(x,y)EZ[x,y]. 
A similar restriction on z may be derived from (4.2). Putting Z[x, y] = 

Z[~X-~Y,X-~Y] =Z[U, o] and noting that u=3x-5y and 0=x-2y are alge- 
braically independent, we can rewrite (4.2) as (u, z) = (u, o), obtaining with this 
change of variables the same relation as in (4.1). By the same procedure as above we 
thus arrive at 

z=E*(x-2Y)+(3x-5Y)g(x,Y) 

withe2=fl andg(x,y)EZ[x,y]. 

(4.5) 

Comparing (4.4) and (4.5) and putting x=0 we derive the contradiction 

5 I (El +2&t). 

Among the types of rings about which one could ask whether they are Chinese or 
not are the Priifer domains and the semilocal rings. A particular case which ought to 
be settled is of course Z[x]. A general characterization of Chinese rings might con- 
ceivably be given in term of their modules. 
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